From Domain Specification to Virtual Humans:
An integrated approach to authoring tactical questioning characters

Sudeep Gandhe, David DeVault, Antonio Roque, Bilyana Martinovski,
Ron Artstein, Anton Leuski, Jillian Gerten, David Traum

USC Institute for Creative Technologies, Marina del Rey, California

traum@usc.ict.edu

Abstract

We present a new approach for rapidly developing dialogue ca-
pabilities for virtual humans. Starting from domain specifica-
tion, an integrated authoring interface automatically generates
dialogue acts with all possible contents. These dialogue acts are
linked to example utterances in order to provide training data
for natural language understanding and generation. The virtual
human dialogue system contains a dialogue manager following
the information-state approach, using finite-state machines and
SCXML to manage local coherence, as well as explicit model-
ing of emotions and compliance level and a grounding compo-
nent based on evidence of understanding. Using the authoring
tools, we design and implement a version of the virtual human
Hassan and compare to previous architectures for the character.
Index Terms: spoken dialogue systems, virtual humans

1. Introduction

In this paper we report on the specific advances in language
processing of our third generation Virtual Humans for Tacti-
cal Questioning. Virtual Humans are Embodied Conversational
Agents that interact with users via spoken language. The aim
of this work is to produce tools that non-experts in natural lan-
guage dialogue can use to create characters to serve as virtual
role-players in training environments for tactical questioning.
Tactical Questioning is when military personnel, usually on pa-
trol, hold conversations with individuals to receive information
of military value. As well as simply extracting specific infor-
mation it can also involve goals of building rapport and gath-
ering general information about the local area. There are dif-
ferent questioning tactics that can be employed, from the “di-
rect” approach, to offering incentives, or raising fear of the con-
sequences of non-compliance. Different tactics have different
chances of success with different interviewees, and part of the
challenge is to learn when it is appropriate to use which tactics
and what the consequences will be.

The work described in this paper directly builds on previous
versions of the architecture, as reported in [1, 2]. Our first ar-
chitecture, described in [1], required little technical knowledge
to author, since one simply linked up questions (or other inputs)
to responses. Scripted inputs were augmented with paraphrases
and novel questions encountered in wizard and system testing,
in order to reach good classifier performance on unconstrained
spoken input. This kind of system has some limitations for a
training system, however, since it is not flexible to the different

This work has been sponsored by the U.S. Army Research, Devel-
opment, and Engineering Command (RDECOM). Statements and opin-
ions expressed do not necessarily reflect the position or the policy of the
U. S. Government, and no official endorsement should be inferred.

personalities or attitudes the character may wish to exhibit and
is not affected much by the trajectory of the dialogue. While
there are dialogue models available for tracking the progression
of a virtual human character’s emotion and dialogue state (e.g.
[3, 4]), these are designed for more complex domains, with ne-
gotiation of coordinated actions rather than just information ex-
change, and have heavier authoring demands. Instead we chose
to make minimal extensions to the text-driven system, result-
ing in our second version, reported on in [2]. This system used
sets of linked question-answer domains, one for each compli-
ance level of the character (e.g. compliant, reticent, adversar-
ial,..), as well as additional recognizers for relevant dialogue
move, topic, and politeness. We added a dialogue manager [5]
that can track several emotional and social variables, and de-
cide on which of the possible responses to produce, depending
on the chosen compliance level. The second version produced
improvements in the consistency of responses within a session
and global trajectory of the agent personality, as well as vari-
ability across sessions, but did not do a good job of maintaining
intermediate-level coherence. Local coherence between initia-
tive and response is well handled by the classifier technology,
but a problem arises when the characters incur obligations or
conditional obligations [6] that are not immediately addressed.
For example, when asked about sensitive information, a char-
acter might first elicit assurances before providing the informa-
tion. When assurances are given, the character should be able
to provide the information without being queried specifically
again, as was required in the system in [2]. Moreover, even if
the question is asked again, it might be done in an elliptical or
anaphoric manner, which the character must recognize as rele-
vant to the previous questioning.

We thus needed to add additional resources for dialogue
processing at the meaning level, while still keeping the domain
authoring process non-technical enough so that domain experts
with little computational linguistic training can easily use it.
The specific enhancements described in this paper include:

e an integrated authoring environment to help manage the
connections between domain, dialogue, and text levels

e an expansion of the dialogue manager to track additional
aspects of local dialogue coherence, including deferred
obligations and motivations for answering a question,
and grounding and other subdialogues

e modules to increase the dialogue performance and de-
crease authoring burden using anaphora tracking and
stylistic generation enhancements

Our authoring process starts with the domain knowledge
construction layer, as described in Section 2. From this we are
able to automatically construct the relevant dialogue acts that

are used by the dialogue manager components for tracking con-
text and deciding on system dialogue moves as described in sec-
tion 3. The authoring tools also allow direct linking of these acts
to surface text for NLU and NLG, as described in section 4.

For comparison purposes, we have implemented versions
of the same character, Hassan, in our three architectures. The
scenario for Hassan takes place in contemporary Iraq. In a fic-
tional storyline, the trainee talks to Hassan, a local politician, to
determine who has placed an illegal tax on a local marketplace.

2. Domain Knowledge Level

Domain knowledge is created as a four level hierarchy. The
highest level is the characters, the conversational participants
in the domain, e.g. the trainee (called player) and Hassan, who
can be speakers and addressees of utterances and dialogue acts.
Each character knows about a set of objects. These objects can
be of different types such as person (imam), location (market) or
abstract concept (tax). Each object can be further described by
attributes. Finally, attributes can take on values, some of which
can be marked false - to be used as lies. A basic proposition is a
triple <object,attribute,value>. Objects of type person can also
have representations of the actions they can perform (e.g. offers,
threats, admissions), their goals, and their attitudes toward other
objects. These additional aspects are used to create policies for
how to engage in questioning dialogues, as described in the next
section. Another aspect crucial for the tactical questioning is
social behavior, oriented more generally to the characters rather
than specific objects. We have sets of these kinds of content,
including compliments and insults.

We use a simple XML representation of these domain
knowledge aspects, for ease of use across modules of the sys-
tem at both domain specification and run-time. Figure 1 shows
parts of the domain specification used for the Hassan scenario,
including an attribute and an action for Hassan, and both a true
and false (i.e. lie) value for an attribute about the tax

<domain name="hassan">
<character name="hassan">
<object name="hassan" type="person">
<attribute name="role">
<value>middle-man</value>
</attribute>
<actions>
<offer name="cooporate"/>
</actions>
</object>
<object name="tax" type="abstract">
<attribute name="collector">
<value>hassan</value>
<value isTruth="false">
tax-collecting-soldier
</value>
</attribute>

Figure 1: Aspects of the Hassan domain

In order to more easily author domain content, we have con-
structed a GUI, shown in Figure 2. The top pane shows the do-
main creation aspects, where, moving from left to right, authors
can add or delete characters, objects, attributes (or other ob-
ject contents) and values. The GUI will automatically construct
XML like Figure 1 when the author adds fields to the GUI.

Domain Editor [hassan_project.xml] =58
File Project Help

Characters. Objects [ob: tax Values
e AL oy o AL
(Ch hassan (O] hassan hassan (true]
(Ch: player (Obj imam ftax-collecting-soldier [false]
[Ob: sunmis D) At instigator
D

&[] Atitudes
& Actions

- coals

& Compliments.
> nsults

(Obj: player

Dialogue Act Types
AL 4 (5 +17)
o 3 primitive (2)

Dialogue Acts (3)

o (7 elict (3)
o response (0)
[other (17)

</dialogue_act>
< I ’

Surface Text
yet no.i don't understand what is this tax you are referring to . are you co+ ah who is collecting the tax o

who s collecting the tax at the market 7 |

ok well maybe could you just tell me itle about the town. | understand that there is a ah tax being levied.

ah do you know what's being taxed 7 =

i'm actualy just trying to find out about the tax and why its being levied o if ah you know where (xcx)

doyo

uess i'm not i didn't realize that there was someone else involved.

Add Utterance

Figure 2: A tool for designing the domain, dialogue acts and the
utterances that map to those dialogue acts.

3. Dialogue Level

Once the domain is defined, it needs to be linked up with the
language that will be used to refer to it. Dialogue acts form
the middle level in this link, having domain aspects as their
contents and being identified directly as the interpretations of
language utterances. In 3.1, we describe the basic meaning of
dialogue acts and how they are created. In 3.2, we describe
several new aspects of the dialogue manager, which makes use
of these dialogue acts to update the information state and decide
what content to express.

3.1. Dialogue Acts

Our dialogue manager reasons about several standard types of
dialogue acts, including assertions, yn-questions, wh-questions,
compliments, offers, threats, insults, and elicitations and re-
sponses for most acts. Figure 3 shows our XML representa-
tion of some of these acts, which contain a speaker (one of the
characters), an act-type, and contents.

Most dialogue acts are automatically created from the
domain representation described in Section 2. E.g. all
<object,attribute,value> triples for a character can serve as
the contents of an assert for that character. Likewise, any
<object,attribute> pair for that character can serve as a WHQ
for other characters.

The middle pane of the authoring GUI shown in figure 2
allows selection from among the full set of dialogue acts and
all contents understood by the character. The left pane allows
selection of the type of dialogue act; the middle pane lets one
select individual dialogue acts; the right pane shows the full
XML content. We also generate some generic dialogue acts that
are customary in human-human conversations like greeting and
closing, that are not tied to specific domain content. Besides the
automatically generated acts that come from content specifica-
tion, the user can create special-purpose dialogue acts directly
at this level, if necessary, using the GUL

3.2. Dialogue Manager

The main responsibilities of the dialogue manager are to up-
date the information state and dialogue history and to select
content to be generated. The dialogue manager gets input dia-
logue acts from the NLU and outputs dialogue acts to the NLG.
It decomposes the dialogue acts in order to update the infor-

hassan.assert
<dialogue_act speaker="hassan">
<primitive_dialogue_act>
<assertion>
<object name="tax">
<attribute name="collector">
<value>hassan</value>
</attribute>
</object>
</assertion>
</primitive_dialogue_act>
</dialogue_act>

Indeed, you might say that I collect the taxes.

player.offer
<dialogue_act speaker="player">
<primitive_dialogue_act>
<offer name="give-money"/>
</primitive_dialogue_act>
</dialogue_act>

We can offer you financial reward.

hassan.elicit-offer
<dialogue_act speaker="hassan">
<elicit>
<primitive_dialogue_act>
<offer name="give-money"/>
</primitive_dialogue_act>
</elicit>
</dialogue_act>

I might tell you what you want if there was something in it for me.

Figure 3: Sample dialogue acts automatically generated from
the Hassan domain along with example utterances.

mation state. Our previous dialogue manager [5] made use of
hand-authored rules for tracking affective variables and offers
and threats made. It used these to compute a compliance level,
which would dictate how the character would respond. In that
system the response was still calculated using text-to-text map-
pings, requiring complete input-text to output-text mappings for
all compliance levels. By moving to the use of dialogue acts and
domain content, we are able to reason at a more abstract level
about how to respond. Two new components of the dialogue
manager are described below.

3.2.1. Response Generation

The response generation component keeps track of the dialogue
history and outputs a dialogue act in response to an input dia-
logue act. The system uses the information-state approach to
dialogue modeling [7]. The information state update rules are
written as augmented transition networks or state charts. We are
using State Chart XML (SCXML), a W3C working draft [8],
for describing the state charts. SCXML allows for explicit data
models that can be manipulated by executable code. This code
can be triggered on entry or exit from a state or transition. A
set of networks can also be run in parallel fashion. As pointed
out by [9], all these features make it viable to implement the
information-state based dialogue model with SCXML."

We have a set of networks for each type of subdialogue.
These networks model Hassan’s conversational obligations, fol-

'We used the apache commons SCXML implementation. Available
at http://commons.apache.org/scxml

player.offer

player.offer

hassan.elicit-offer

offer not
elicited

offer given

hassan.elicit-oﬁer\‘)ffl/ player.offer

hassan.response-offer or

hassan.assert
(a) offer subdialogues

player.whq or
playerynq

player.whq or
player.yng

hassan.assert ifthe constraints about
the question are safisfied

(b) question-answer subdialogues

question
resolved

question not
resolved

Figure 4: State charts for Hassan domain.

lowing [6]. Figure 4(a) shows a sample network that handles
dialogue acts for the offer subdialogue. The outgoing arcs from
the currently active states denote all possible dialogue acts that
can be generated as a response by the system or can be han-
dled as input from the user. Some of these transitions can be
conditional and depend on the data model configuration (i.e.
information-state).” The character’s compliance level is also
used to decide what kind of reply to make. E.g., when adversar-
ial, the character may choose to lie in response to questions, if
a lie is available.

<question_resolved, offer_not_elicited>

Ok I’'m trying to understand where the local

taxation is coming from?

<question_not_resolved, offer_not_elicited>

2.1 H grounding So you want to talk about the taxes.

22 H elicit- I might tell you what you want if there was
offer something in it for me.

<question_not_resolved, offer_elicited>

‘We can offer you financial reward.

<question_not_resolved, offer_given>

Please understand, I collect taxes for my

Imam. All in service to Allah.

<question_resolved, offer_not_elicited>

1 P whq

3 P offer

4 H assert

5 P whq And what is his name?
<question_not_resolved, offer_not_elicited>
6 H elicit- My friend, if people find out that I tell you
offer this, it would be a problem for me.

Figure 5: Example dialogue, P is the player (human trainee) and
H is Hassan. The currently active states are shown within <>.

As an example, in the dialogue from Figure 5, the player
asks a sensitive question (utterance 1), the constraints for which
are not yet satisfied. At this point Hassan chooses to elicit an of-
fer. The particular offer to be elicited depends on the constraints
for the question under discussion. After utterance 3 the con-

2The constraints and policies for these networks are currently hand-
authored, but our future plans are to include a capability to author these
in the GUI. Consistent with our design approach, the domain author
will be expected to select from a set of reasonable subdialogues for a
given type of content rather than engineer subdialogue networks from
first principles (though that option will be available if needed).

straints are met. Hassan can either choose to answer the ques-
tion (hassan.assert) or respond to the offer (hassan.response-
offer). In compliant mode hassan chooses to go with more in-
formative option as in utterance 4.

3.2.2. Grounding

A grounding component tracks the extent to which the dialogue
participants have achieved mutual understanding of the mate-
rial being discussed. The grounding module manages behavior
such as explicit and implicit confirmations and requests for rep-
etitions. The grounding module uses domain knowledge when
making decisions about the extent to which material must be
grounded.

4. Textual Level

The remaining pieces of the system involve converting from sur-
face text to dialogue acts and back again. The authoring GUI
shown in Figure 2 supports this via links between natural lan-
guage texts in the bottom pane, and dialogue acts in the middle
pane. For each dialogue act from the character, the author can
add one or more options for the character to realize this act.
Likewise, for the player dialogue acts, the author can link pos-
sible ways for the player to produce this act.

4.1. Natural Language Understanding & Generation

The NLU uses a statistical language modeling text classification
technique [1] to map the text produced by the speech recogni-
tion to dialogue acts. It requires a training corpus of sample
utterances linked to dialogue acts, which can be produced in the
authoring GUI as described above. This technique generalizes
from the set of authored texts to find the closest dialogue act
match (or unknown if no candidate exceeds a threshold). Using
the GUI and automatically created dialogue acts helps lighten
the authoring burden and ensure consistency and coverage of
the training set.

The NLG uses the same statistical classification techniques,
but mapping from dialogue acts to surface text. The NLG output
can be modified by a style generator described below.

4.2. Anaphora Resolution

Tactical questioning involves extended dialogues in which in-
formation about particular objects and individuals arrives incre-
mentally. In this setting, it is common for the trainee to use
pronouns to refer to individuals under discussion, as illustrated
by the use of Ais in utterance 5 in Figure 5. Our system resolves
such pronouns, and uses the identified antecedent text (in this
case my Imam) to create a more informative text for the NLU
to interpret. In this example, the result is that NLU receives the
text And what is your imam’s name? rather than the trainee’s
actual spoken text And what is his name?. To identify a pro-
noun’s antecedent, we use the machine learning approach of
[10], which learns how to select the correct antecedent using a
corpus of annotated versions of domain-specific dialogues such
as that in Figure 5.

4.3. Style Generation

We have also further reduced the authoring burden while al-
lowing productive expression of stylistic features by adding
a hybrid statistical-grammar based style generator as a post-
processor to the NLG. The Style Generator uses the compliance
level to generate the styled text output. For example, utterance

6 in Figure 5 begins with the phrase My friend, which Hassan
uses as a deliberate signal of politeness toward the trainee. De-
pending on Hassan’s level of compliance, his output is dynam-
ically filtered to include a variety of such signals of politeness
(My friend, Sir, etc.) or rudeness (Listen to me, Look, You don’t
understand, etc.). The style generator is based on techniques
described in [11].

5. Preliminary Evaluation

We conducted a preliminary analysis of the improvements made
to Hassan over previous architecture as described in [2]. A set of
subjects ran the scenario, and filled out post-session surveys rat-
ing the experience on a scale of 1 to 7. The results of those rat-
ings were compared to ratings from the previous Hassan system.
In the three key user-satisfaction measures the system showed
improvement. For answer to the question “How would you rate
your performance in questioning Hassan?” the improvement
was statistically significant (p<<0.01 on student’s T-test). For
the questions, “How satisfied were you with your interview with
Hassan” and “How well do you think Hassan understood your
speech,” the average results were higher but the results were not
statistically significant. We have started conducting larger eval-
uations with more specific questions to determine the source
and magnitude of the improvements. We also plan to test the
authorability, by having non-experts use our tools to develop
new characters.

6. References

[1] A. Leuski, R. Patel, D. Traum, and B. Kennedy, “Building ef-
fective question answering characters,” in Proceedings of the 7th
SIGdial Workshop on Discourse and Dialogue, 2006.

[2] D. Traum, A. Roque, A. Leuski, P. Georgiou, J. Gerten, B. Marti-
novski, S. Narayanan, S. Robinson, and A. Vaswani, “Hassan: A
virtual human for tactical questioning,” in The 8th SIGdial Work-
shop on Discourse and Dialogue, 2007.

[3] J. Rickel, S. Marsella, J. Gratch, R. Hill, D. Traum, and
W. Swartout, “Toward a new generation of virtual humans for in-
teractive experiences,” IEEE Intelligent Systems, vol. 17, 2002.

[4] D. Traum, W. Swartout, J. Gratch, and S. Marsella, “A virtual hu-
man dialogue model for non-team interaction,” in Recent Trends
in Discourse and Dialogue, L. Dybkjaer and W. Minker, Eds.
Springer, 2008.

[5] A. Roque and D. Traum, “A model of compliance and emotion
for potentially adversarial dialogue agents,” in The 8th SIGdial
Workshop on Discourse and Dialogue, 2007.

[6] D. Traum and J. Allen, “Discourse obligations in dialogue pro-
cessing,” in Proceedings of the 32nd Annual Meeting of the Asso-
ciation for Computational Linguistics, 1994.

[7]1 D. Traum and S. Larsson, “The information state approach to dia-
logue management,” in Current and New Directions in Discourse
and Dialogue. Kluwer, 2003.

[8] J. Barnett, M. Bodell, D. Burnett, J. Carter, and R. Hosn, “State
Chart XML (SCXML) : State machine notation for control ab-
straction,” 2007.

[9] F. Kronlid and T. Lager, “Implementing the information-state up-
date approach to dialogue management in a slightly extended
scxml,” in Proceedings of the SEMDIAL, 2007.

[10] C. Miiller, “Resolving it, this, and that in unrestricted multi-party
dialog,” in Proceedings of the 45th Annual Meeting of the Associ-
ation of Computational Linguistics, June 2007.

[11] David DeVault and David Traum and Ron Artstein, ‘“Making
grammar-based generation easier to deploy in dialogue systems,”
in The 9th SIGdial Workshop on Discourse and Dialogue, 2008.

