
Domain Inference in Incremental Interpretation

David DeVault and Matthew Stone

Computer Science and Cognitive Science
Rutgers University

{ddevault,mdstone}@cs.rutgers.edu

Abstract

Speakers in dialogue describe domain-specific actions, goals, conditions and plans
using the general resources of their linguistic knowledge. Interlocutors must recog-
nize these descriptive connections through inference—and they must do so incre-
mentally, since they need interpretations of partial utterances to inform their on-line
participation in conversational interaction. This paper explores techniques that dia-
logue systems can use to achieve incremental interpretation, even when domain rea-
soning is modular, genuinely nonlinguistic and potentially expensive. We base our
discussion on an implemented prototype natural language interface, figlet, that
combines plan-recognition with real and discrete constraint-satisfaction to interpret
English instructions in a drawing domain. figlet provides a proof-of-concept of
the feasibility of such incremental interpretation, a testbed for the quantitative eval-
uation of the tradeoffs involved, and a case study in the methodological challenges
that remain for future work.

1 Introduction

We are experts at formulating instructions in natural language that tell our
collaborators what we expect of them. But our instructions are infamous
for the “common sense” they seem to presuppose. For example, when we
formulate or carry out instructions, we seem to never even consider harmful
or off-topic actions as possible interpretations, no matter how precisely they
fit what we say. An increasing range of projects in AI aim to endow computer
systems with similar expertise [1,2,6,15]. This work reveals that in constrained
domains, the knowledge required to characterize domain actions is increasingly
available, and systems can increasingly reason efficiently with this knowledge
to draw conclusions about actions and their effects in context.

In this paper, we explore the computational infrastructure required for
such applications of inference to incremental natural language interpretation.
As a case study, we consider an implemented drawing application, described in
Section 2, in which the user can use language to instruct the system to draw a
caricature of an expressive face. In this application, instructions as expressed

in language may be vague, ambiguous or both, and only domain reasoning
about the inferred structure of the figure will resolve the underspecification.
To support interactive dialogue, our interface needs to be able to carry out
this reasoning incrementally, over provisional constituents.

Despite this dependence of utterance interpretation on incremental domain
reasoning, we assume that language has no say in the form of domain represen-
tations or the models and processes of domain inference. Rather, we assume
that domain reasoning is modular, genuinely nonlinguistic, and potentially
expensive. The challenge is thus to integrate domain reasoning with linguistic
interpretation in an efficient, modular and scalable architecture. We describe
our solution in Section 3. Despite the potential pitfalls, we have achieved an
effective integration of domain reasoning and interpretation, through our own
analysis of the inference problems the system faces. As we argue in Section 4,
the principal challenge for future work is to found such integration on general
abstractions rather than meticulous analysis.

2 Interpretation and modular domain inference

2.1 Interpretation

The computational problem of interpretation that practical dialogue systems
need to solve is to identify the intention motivating an utterance in context.
By recognizing these intentions, dialogue systems can use utterance interpre-
tations directly to inform their interactions with users. For example, Allen,
Ferguson and Stent [1] describe and motivate a general architecture for natural
language dialogue systems, which is designed to give a central place to the in-
tentions behind utterances in collaboration. More generally, Rich, Sidner and
Lesh [11] discuss how any practical interface can collaborate with its users by
modeling their intentions, while Stone [14] characterizes linguistic interpreta-
tions for dialogue as a special case of general intention representations.

Concretely, consider the interaction in Figure 1, in which a user instructs
our natural language interface, figlet, to draw an iconic expressive face. At
each step, the system responds by performing an action that most closely
reflects its assessment of what the user intended it to do. In pursuing such
dialogues, users devise plans to achieve desired real-world results, and pur-
sue those plans more or less systematically. By recognizing these plans, an
interface can predict a limited set of candidate actions that the user might
currently have in mind. See Lesh, Rich and Sidner [8] for specific models of
the different strategies by which users act in interfaces.

The remaining task of interpretation is to use the action description pro-
vided in the user’s utterance to identify one of the candidate actions pre-
cisely enough to carry out a cooperative response. In the drawing domain
of Figure 1, for example, the repertoire of system actions includes adding
new objects, moving them, resizing them, and changing their shape. These

2

(5) Flatten the head(4) Draw a head(3) Add the eyes

[Initial blank figure] (1) Make a mouth (2) Make the mouth a rectangle

Fig. 1. Interacting with figlet.

actions allow users to build figure parts by introducing shapes and revising
them. Users’ domain plans organize these actions hierarchically into strategic
patterns. For example, users characteristically complete the structures they
begin before drawing elsewhere; and once they are satisfied with what they
have, they proceed in natural sequence to a new part nearby. Users’ proposed
actions at any point are thus constrained by the drawing they have created
and their focus of attention within it. The effect of user instructions is to
select an action from the set of candidate actions at each point, and to help
determine values for any free action parameters.

In this characterization of interpretation, the central reasoning task is to
match the shared contextual background against the linguistic descriptions
formulated by the user. To specify these correspondences, we work at the
knowledge level, as understood by Levesque [9]. We use logic as the inter-
face between the linguistic processing and the domain reasoning required to
interpret instructions. In particular, we use constraints, or logical conjunc-
tions of open atomic formulas, to represent the contextual requirements that
utterances impose; we view these constraints as presuppositions that speakers
make in using the utterance. We assume matches take the form of instances
that supply particular domain representations as suitable values for variables.
Stone [13] motivates this framework in detail.

As a concrete example, (1a-c) records the presuppositions we assign to an
utterance of Make the face bigger.

(1) a. simple(A) ∧ target(A, X) ∧ holds(now , fits plan(A)) ∧
holds(result(A, now), visible(X))∧

b. number(X, 1) ∧ holds(now , type(X, face))∧
c. holds(now , size(X, SO)) ∧ region(R, bigger than, SO) ∧

in region(SN, R) ∧ holds(result(A, now), size(X, SN))

We formulate these constraints in an expressive ontology. We have terms and
variables for actions, such as A; for situations, such as now and result(A, now);
for objects, such as X; and for quantitative points and intervals of varying

3

dimensionality, such as S and SO (two-dimensional points recording size as
width and height) and R (a region in size space). We can characterize entities
in terms of the state of the visual display in different situations; for example
holds(now , size(X, SO)) means that SO is the current (“old”) size of X, and
holds(result(A, now), size(X, SN)) means that SN will be the new, possibly
different size of X once action A is carried out. We can characterize entities in
terms of causal relationships in the domain; for example target(A, X) means
that action A directly affects X, and the constraints of (1c) together mean
that carrying out action A causes X to have a new bigger size SN . And
we can characterize entities in terms of the model of the user’s attention and
intentions; for example simple(A) means that the action A is a natural domain
action rather than an abstruse one, and holds(now , fits plan(A)) means that
A is a possible action given the user’s current plan state.

(1) is structured to show how the overall presupposition of the utterance
factors compositionally into contributions from the syntactic components that
make it up. 1 Overall, then, (1) characterizes natural and contextually appro-
priate actions that affect a single face X and that bring about a situation in
which X is visible and has a size SN larger than its current size.

2.2 Using domain inference to interpret ambiguous and vague utterances

According to the model sketched in Section 2.1, calculating the interpretation
of utterances involves calling on representations of the current visual context,
the current user model, and general domain inference, in order to supply values
to variables in presupposed constraints such as (1). Although all this informa-
tion is essential for recognizing the user’s intention, we find that deep domain
inference—as embodied in constraints such as holds(now , fits plan(A)) and
holds(result(A, now), size(X, SN)) that link interpretation to plan-recognition
and causal inference—plays a surprisingly pervasive and powerful role in the
process. We catalogue some of the effects of domain inference in our applica-
tion using the examples in (2).

(2) a. Make the circle an x.

b. Put a circle below the eyes.

c. Lower the circle below the eyes.

Domain inference contributes to:

• Identifying objects under ambiguous descriptions. To interpret (2a), the
system must find a figure part that is currently rendered as a circle but that
could be rendered as an x instead. Not every circle in the figure works; for

1 Make contributes (1a), requiring A to be a natural and contextually appropriate action
that affects object X and brings about a situation in which X is visible; the face contributes
(1b), requiring that the object X must currently be a single face; bigger contributes (1c),
requiring that action A must result in a new size SN for X that falls in a region R including
all measures larger than the current size SO of X .

4

example, you cannot draw an x for the circle that represents the silhouette
of the whole head. This fact is part of the domain knowledge that speakers
appear to assume in producing terse utterances like (2a). In interpretation,
this constraint helps zero in on the object that the user had in mind, even
when no noun phrase in the user’s utterance completely identifies it.

• Selecting quantitative parameters for action in response to vague requests.
In (2b), domain reasoning allows the system to recognize that the circle here
is meant to serve as the mouth of the figure. That gives a new constraint
on where to draw the circle that narrows down the vague spatial placement
indicated by the user, below the eyes.

• Resolving syntactic ambiguity. We can rule out an analysis with no domain-
specific interpretation. For example, in (2c), the PP below the eyes may be
analyzed as an NP modifier specifying the present location of the circle
or as a VP modifier specifying the final location of the circle. The VP
modifier reading may be discarded as inapplicable if every object either
already lies below the eyes (the mouth) or cannot be moved there (the
eyes, the silhouette). The importance of context for disambiguation is well
known; Schuler [12] provides a recent case study. Here we observe further
that on-the-fly domain inference may be needed to inform parsing decisions,
in addition to a precomputed domain-specific contextual database.

2.3 Incremental interpretation

In this paper we are particularly concerned with applying the domain inference
described in Section 2.2 incrementally, to compute interpretations for partial
utterances. Our principal motivation is the desire to support more natural
conversational interaction in figlet.

In real-time conversation, speakers frequently count on their interlocutors
to understand partial utterances. Indeed, speakers frequently act as if their in-
terlocutors should be able to actively collaborate in helping to complete them.
To give just one example, (3a) presents a “trial noun phrase” that Clark and
Wilkes-Gibbs [4, pp. 466–467] observed in the human-human dialogues they
studied. The trial noun phrase is marked by rising intonation, and constitutes
an explicit request for the hearer to indicate, before the speaker continues with
the utterance, whether the noun phrase has been understood.

(3) a. S: Okay now, the small blue cap we talked about before?

b. J: Yeah.

c. S: Put that over the hole on the side of that tube...

Other similar phenomena include the use of expanded noun phrases, install-
ment noun phrases, and proxy noun phrases; the formulation and interpreta-
tion of self-repair; and the concurrent feedback speakers expect with backchan-
nel items like okay and mm-hmm. See Clark and Wilkes-Gibbs [4], Milward
and Cooper [10] or Allen, Ferguson and Stent [1] for more detailed discussion

5

of this fine-grained interactivity. These conversational phenomena suggest
that a language understanding system aspiring to natural, real-time dialogue
with human users will not only need domain inference at some stage of in-
terpretation, but that it will need to call on domain inference on provisional
constituents. Such problems can be approached naturally within an incremen-
tal interpretation strategy such as the one we develop in this paper.

In general, the interactivity of natural dialogue is only one of many mo-
tivations for incremental interpretation. Incrementality may improve system
performance even when the system does not act incrementally. For exam-
ple, since users formulate utterances incrementally, partial utterances may be
available for a substantial amount of time—enough to get much of the work
of interpretation done in some applications. In such cases, an incremental
interpretation strategy may allow the system to respond more quickly, by
minimizing the delay between the time the user finishes and the time the
utterance is interpreted.

Similarly, in certain applications, bringing context to bear on parsing deci-
sions may dramatically decrease total interpretation time by ruling out, at an
early stage, many analyses which are linguistically possible but contextually
unsupported. Extreme cases of syntactic ambiguity include sentences such as
(4), attributed to Stabler by Milward and Cooper [10, (1)].

(4) I put the bouquet of flowers that you gave me for Mothers’ Day in the
vase that you gave me for my birthday on the chest of drawers that you
gave me for Armistice Day.

Attachment ambiguities give this sentence 4,862 distinct syntactic analy-
ses. Incremental interpretation is one strategy an application faced with
widespread ambiguity could take, in an effort to defuse potential combina-
torial interactions among ambiguities early on. See also Haddock [7]. 2

Finally, of course, incrementality is an important aspect of human sen-
tence processing; for example, Brown-Schmidt, Campana and Tanenhaus [3]
offer new evidence for incrementality from their investigations of spontaneous
dialogue. We do not suppose that human incrementality in itself argues that
natural language systems should therefore be incremental, too. (This supposi-
tion is sometimes made, however; see Haddock’s introductory discussion in [7],
for example.) Nevertheless, a cognitive model of human sentence processing
will have to account for this incrementality in computational terms, and our
work may prove relevant to this scientific project.

For the present purpose of exploring the use of domain inference in incre-
mental interpretation, it is not crucial what factor compels the adoption of an
incremental interpretation strategy in a particular application.

2 While figlet must be prepared to handle mildly ambiguous utterances, such as (2c),
syntactic ambiguity does not at present necessitate an incremental interpretation strategy.

6

2.4 Modularity and Inference in Interpretation

Calculating the interpretations as described in Sections 2.1 and 2.2 might seem
like a straightforward application for off-the-shelf constraint programming, as
in Oz [5]. These techniques assume that the solution instances for individual
constraints can be tabulated efficiently and supplied as input to the constraint
solver. The solver then manages the combinatorial interactions that arise in
reconciling the tables into consistent overall solutions.

Such constraint solutions can even be maintained and updated in tandem
with grammatical analysis, as described by Schuler [12]. On this strategy,
upon encountering the word make, the presuppositions it contributes, (1a),
are immediately solved, yielding a set {(Ai,X i)} where each (Ai,X i) is a
pair of domain representations that satisfies the presuppositions. Subsequent
words in the utterance trigger their own, independent search problems. In
building up the syntactic structure of the complete utterance, incompatible
solutions are weeded out, so that when the complete syntactic structure of the
utterance is finally derived, only complete utterance interpretations remain.

In fact, however, such techniques cannot be applied to find instances for
interpretive constraints such as (1). In practice, these relations are impossi-
ble to tabulate. Our rich ontology induces relations of high arity over large
domains. Moreover, these relations are frequently intensional or hypothetical,
and hence cannot be closely circumscribed by the representation of the figure.
The semantics of bigger in (1c) illustrates the difficulties. In general, bigger
describes the sizes of two objects in two situations:

(5) holds(TO , size(XO , SO)) ∧ region(R, bigger than, SO) ∧
in region(SN, R) ∧ holds(TN , size(XN , SN))

The first object XO provides its size SO in situation TO as a reference, and
this size is compared with the size of the second object XN in the second
situation TN . This is a common pattern shared by relational vocabulary,
including prepositions (such as in) and relational spatial adjectives (such as
left). Based on the syntactic (and pragmatic) context in which these words
are used, these words could describe one or two specific objects, and could
describe neither, either, or both sizes hypothetically. For example, the syntax
of Make the face bigger determines that XO = XN , that TO is now but TN
is hypothetical. The syntax of Move the bigger face up, on the other hand,
allows XO and XN to differ but requires that TO = TN = now. In this
case there are two different faces, one of which is currently bigger than the
other. We have to reason in terms of varying objects and situations to get the
semantics of instructions right.

It is impossible to match such semantics arbitrarily against the context,
even in the simplest applications. For example, in a typical situation, figlet
can perform about 35 primitive actions (move the eyes, move the mouth, resize
the face, etc.), and there are 127 distinct nonempty subsets of individuals on
the screen. To tabulate instances for a word like bigger as formalized in (5)

7

would require considering some 1,225 real and hypothetical pairs of situations,
and 16,000 pairs of referents in each. Even the component relations in (5) get
unwieldy in these simple contexts; for example, they may involve computing
binary relations over thousands of hypothetical sizes, indexed functionally by
object and situation. In our implementation, we have been simply unable to
tabulate lexical interpretations within our available time and memory.

We have chosen instead to implement domain inference by simulation. Re-
lationships of the form holds(result(A, now), P) are assessed by operational
specification transforming the current state as dictated by action A, and
checking whether P holds in the resulting representation. Thus, although
we support a knowledge-level analysis of inference in interpretation in terms
of constraint-satisfaction, we emphasize that for implementation, inference
in interpretation is a matter of problem-solving. The understanding process
must therefore formulate specific, constrained tasks for domain reasoning at
appropriate stages in interpretation.

3 Implementing incremental interpretation

3.1 Incremental understanding

Language understanding in figlet is mediated by a bottom-up chart parser
written in Prolog. As usual, chart edges indicate the presence of recognized
partial constituents within the input sequence. In addition, edges now in-
terface with the domain problem-solving required for understanding. Edges
include a set of candidate interpretations; each candidate is represented along
with the status of the ongoing domain problem-solving associated with it.
Specifically, as in Schuler’s work [12], candidate interpretations include an
instantiation of discourse anaphors to discourse referents that meet presup-
posed constraints; this summarizes information about objects from completed
problem-solving. Moreover, our interpretations include lists of real constraints,
represented symbolically. The real constraints formalize the metric and spa-
tial relationships that have been inferred for this interpretation from domain
problem-solving. Finally, interpretations include lists of delayed presupposi-
tions. The delayed presuppositions must ultimately be derived by domain
inference to construct a completed interpretation, but may not yet be suffi-
ciently specified for this inference to be tractable.

We present pseudocode for our understanding algorithm in Figure 2. For-
mally, we use the notation c : i → j to indicate the chart edge of syntactic
category c from word i to word j. The edge stores a set of tuples {(v, r, p)}
where v is an assignment of values to variables, r is a list of real constraints
and p is a list of unsolved constraints for domain problem-solving. When using
a packed interpretation chart [12], we can further associate each tuple with a
backward index recording how the tuple has been derived.

As usual, we begin by accessing constituents from the chart and putting

8

To populate edge c : i→ j {
Search over k between i and j

Search over (v1, r1, p1) ∈ c′ : i→ k
Search over (v2, r2, p2) ∈ c′′ : k → j

σ ← combine(c′, c′′, c) – or fail
(v3, r3, p3)← (v1σ + v2σ, r1σ + r2σ, p1σ + p2σ) – or fail
Search over (v4, r4, p) ∈ solve(v3, r3, p3)

(v, r)← simplify(v4, r4, p, c)
Add (v, r, p) to c : i→ j

}
Fig. 2. Algorithm for constructing chart entries with incremental interpretation and
flexible domain inference.

them together by syntactic operations. Syntax is implemented by the function
combine, which determines whether adjacent constituents of category c′ and
c′′ can be put together to make a constituent of category c. When it succeeds,
combine will return a substitution σ which must be applied to relate syntax
and semantics in the overall constituent c to that of its subconstituents. This
substitution may not be possible, because σ may equate variables that have
been assigned incompatible values in subconstituents (as specified explicitly
in the variable assignments or implicitly in the real constraints).

We encapsulate the interface between interpretation and domain inference
by a function solve; solve(v, r, p) calls a domain-specific problem-solver as
appropriate to make progress on the open problem-solving p given the existing
assignment v and constraints r. Since this problem-solving may derive alter-
native candidate interpretations, solve returns a set of new tuples (v′, r′, p′)
where p has been partially solved; each amounts to a new assignment v′ that
extends v, a new list of constraints r′ that extends r, and a subproblem p′ that
represents the unsolved part of the domain problem p. Finally, we note that
it may be possible to simplify the representation of a candidate interpretation
before adding it back into the chart. For example, we can eliminate a variable
(and its associated real constraints) if the variable cannot be constrained by
further syntactic modification, is not subject to outstanding domain problem-
solving, and is not required to express real constraints on other variables.

The important feature of our implementation is that the solve proce-
dure provides an interface where domain reasoning can be staged at the point
in interpretation where it can be applied most effectively. As we have ar-
gued in Section 2, this is important because interlocutors in dialogue expect
some incrementality, but complete word-by-word incrementality will prove
prohibitively expensive. Thus, in practice, it is the complexity of domain in-
ference that motivates the algorithm. Nevertheless, it is instructive to consider
the overall complexity of understanding, abstracting away from domain infer-
ence. Suppose we adopt Schuler’s assumptions [12], that domain reasoning is
completed at the lexical level and yields discrete alternatives. Then each edge

9

will have empty r and p; we can therefore simplify assignments v by pruning
them down to the semantic arguments of the headword of each constituent—a
fixed length. Thus, each chart entry’s size is independent of the length of
the sentence, and the algorithm has asymptotic space and time complexity
O(n3) as a function of the input length n. By contrast, suppose that solve
always delays the constraints associated with incomplete utterances. Then
each interpretation accumulates a semantic analysis of the entire constituent
as its problem p. In the worst case, since utterance interpretations record
assignments to O(n) variables, the number of explicitly-represented alterna-
tive interpretations grows exponentially. Furthermore, since we must call on
problem-solving for each semantic analysis independently, the time required
for interpretation grows hyperexponentially. This may be prohibitive. But
if it is, the problem is inherent in the model of domain inference. Delaying
incomplete problems means that the only way to do semantic disambiguation
is with complete logical forms; searching these logical forms exhaustively will
create combinatorial problems even with a packed chart.

3.2 Inference strategy

In figlet, we implemented solve by using a programmer-specified regime
to manage problems for domain inference during interpretation. This regime
takes the form of delay rules and proof-order rules, which determine which
constraints can be solved and what order to solve them in.

Proof-order rules attempt to restrict the size of the explored search space
by ordering the proofs of a lexical item’s presuppositions in an attempt to
minimize the branching that occurs as each presupposition is considered. The
left-to-right orders of the presuppositions in (1a-c) reflect the proof-order rules
currently defined in figlet. In finding solutions to (1a), for example, figlet
first looks for ways to satisfy simple(A), then for ways to satisfy target(A, X)
as well, and so on. Thus, only simple actions are checked against the plan, and
the visibility of objects is only considered in situations resulting from actions
that fit the plan, and only for objects targeted by actions that fit the plan.

An alternate, less effective proof-order might solve the presuppositions in
the reverse order—right-to-left as they are written in (1a). In this case search
would begin by finding all subsets of visible objects in situations resulting
from known actions, proceed by weeding out actions that don’t fit the plan
and subsets of objects not targeted by actions that fit the plan, and then finally
conclude by filtering out non-simple actions. This alternate proof-order is less
efficient in typical figlet scenarios because it requires more reasoning about
irrelevant entities: there are generally many irrelevant situations, many sets
of visible objects not targeted by actions that fit the plan, and many actions
that fit the plan that are not simple. 3 We have tuned our proof-order rules

3 If a simple action is not found during interpretation, we relax our notion of simplicity
and reinterpret. In this way, more abstruse actions (e.g., move the right eye and resize the

10

to work well in typical figlet scenarios.

While proof-order rules provide control over domain inference within the
interpretation of a single lexical item’s presuppositions, we have found a fur-
ther need to define a problem-solving strategy across the lexical items that
make up an utterance. We use delay rules for this purpose. Delay rules
identify, in terms of the current state of instantiation of certain variables,
presuppositions which are particularly expensive to solve. The expectation
is that subsequent interpretation of other, better constrained presuppositions
will eventually make solving the delayed presuppositions less expensive.

Most of the expense of incremental interpretation in figlet is associated
with simulating actions, which involves consulting domain knowledge about
how to actually carry out each action (for example, what happens to the parts
of the face when the entire face is resized) and invoking a linear real constraint
solver in order to model the interaction between real constraints contributed
linguistically and real constraints encoded as background knowledge. Action
variables, such as A in (1a), are instantiated to fully grounded domain repre-
sentations in two steps. First, a proof of fits plan(A) binds A to a schematic
term representing a primitive action or short sequence of primitive actions tar-
geted at particular individuals. Later, the schematic term may become fully
grounded through a simulation of the action. (For brevity, the instantiation
associated with simulation is omitted from Figure 3.) The delay rules are
designed to minimize the number of times this latter step occurs. They are:

(6) a. Delay fits plan(A) if A’s target is uninstantiated.

b. Delay simulation of A if A is not yet schematized by fits plan(A).

c. Delay holds(result(A, now), P) if A is not yet simulated.

The combined effect of the delay rules is to postpone simulation-based reason-
ing about presuppositions of the form holds(result(A, now), P), which gener-
ally characterize the desired effects of actions, until the targets of potential
actions have been identified, and until off-topic actions have been filtered out.

Let’s reconsider the interpretation of (1a-c) in light of these delay rules.
The chart for Make the face bigger is illustrated in Figure 3. In interpret-
ing Make, simple(A) and target(A, X) are proved immediately. They each
schematize A, but note that their proofs are context-independent and carried
out in constant time. For example, a proof of target(A, X) provides only an ab-
stract link between A and X ; X remains uninstantiated until some later proof
binds it to some domain representation. By contrast, holds(now , fits plan(A))
and holds(result(A, now), visible(X)) are delayed by delay rules (6a) and (6c),
respectively. In interpreting face, number(X, 1) is proved, schematizing X to
some singleton set. Since S is not instantiated until the face is constructed,
holds(S, type(X, face)) is delayed until then by delay rule (6c). In interpret-

mouth) are possible, but simpler actions are preferred. Both simple and non-simple actions
are considered to fit the plan at all times.

11

Edge span Make

Presups simple(A) ∧ target(A, X) ∧ holds(now, fits plan(A)) ∧ holds(result(A, now), visible(X))

Asserts do(A)

Interps ({A← change(X,)}, {}, < holds(now, fits plan(A)), holds(result(A, now), visible(X)) >)

Edge span the

Presups

Asserts

Interps

Edge span face

Presups number(X, 1) ∧ holds(S, type(X, face))

Asserts

Interps ({X ← { }}, {}, < holds(S, type(X, face)) >)

Edge span bigger

Presups holds(TO, size(XO,SO)) ∧ region(R, bigger than, SO) ∧ in region(SN, R) ∧ holds(TN, size(XN, SN))

Asserts

Interps

({SO ← (WO, HO), R← ((WO, HO), (1, 1)), SN ← (WN, HN)},
{WN > WO, WN < 1, HN > HO, HN < 1},
< holds(TO, size(XO,SO)), holds(TN, size(XN, SN)) >)

Edge span the face

Presups number(X, 1) ∧ holds(now , type(X, face))

Asserts

Interps ({X ← {face3}},{}, <>)

Edge span Make the face

Presups
simple(A) ∧ target(A, X) ∧ holds(now, fits plan(A)) ∧ holds(result(A, now), visible(X))∧
number(X, 1) ∧ holds(now, type(X, face))

Asserts do(A)

Interps

({A← change(X, location((XN, Y N))), X ← {face3}},{RLoc(XN, Y N)}, <>),

({A← change(X, size((WN, HN))), X ← {face3}}, {RSize (WN, HN)}, <>),

({A← change(X, shape(SN)), X ← {face3}}, {RShape (SN)}, <>),

({A← change(X, color(CN)), X ← {face3}}, {RColor (CN)}, <>),

Edge span Make the face bigger

Presups

simple(A) ∧ target(A, X) ∧ holds(now, fits plan(A)) ∧ holds(result(A, now), visible(X))∧
number(X, 1) ∧ holds(now, type(X, face))∧
holds(now, size(X, SO)) ∧ region(R, bigger than, SO) ∧ in region(SN, R)∧
holds(result(A, now), size(X, SN))

Asserts do(A)

Interps

({A← change(X, size((WN, HN))), X ← {face3},
SO ← (0.6, 0.7), R← ((0.6, 0.7), (1, 1)), SN ← (WN, HN)},
{WN > 0.6, WN < 1, HN > 0.7, HN < 1,RSize (WN, HN)},
<>)

Fig. 3. The chart constructed during incremental parsing of Make the face bigger.
RProperty indicates constraints on values for Property inferred from domain prob-
lem-solving. Note that presuppositions and assertions need not be stored with each
edge; here they highlight the information from which edge interpretations have been
computed.

ing bigger, the region constraints are proved immediately and yield real con-
straints. The other presuppositions of bigger are delayed according to delay
rule (6c).

Subsequently, as larger syntactic structures are constructed, all the de-
layed presuppositions are eventually proved for certain restricted values of
the variables they contain. For example, when Make and the face are com-
bined, in constructing the incomplete sentential constituent Make the face, the

12

O=H/D=H O=R/D=H O=H/D=R O=R/D=R

CI, mean 631 1240 4007 7343

CI, std 0 185 2099 2684

time, mean 3.6 3.8 57.5 89.5

time, std 0.5 0.4 20.9 29.3

Fig. 4. For four different problem-solving strategies, the total number of domain
constraint instances (CI) returned to the language understanding module, and the
elapsed time spent processing the complete interaction, in seconds.

delayed holds(now , fits plan(A)) and holds(result(A, now), visible(X)) presup-
positions are proved. Proving the latter presupposition causes the simulation
of several actions at this step. However, in conjunction with delay rule (6b),
only actions fitting the plan and targeting faces are ever simulated.

3.3 Performance analysis

To quantify the effect of problem-solving strategy on interpretation, we con-
structed four versions of the system. All versions of the system use the same
constraints and the same domain inference mechanism, so all versions come
up with the same interpretations. The only difference is performance. The
systems differ in whether they used our handbuilt proof order (O=H) or
random proof order (O=R, meaning that the order of constraints in lexical
presuppositions is scrambled when a word edge is initially added to the chart).
And they differ in whether they implement our handbuilt delay rules (D=H)
or make random decisions to delay constraints for domain inference (D=R,
which we tuned to delay with probability 0.44, after finding that the handbuilt
delay mechanism triggered delay 44% of the time).

We presented each version of the system with the instruction sequence
of Figure 1 ten times. The results are presented in Figure 4. The number
of constraint instances solved shows clear differences across conditions (one-
way ANOVA, p<0.0001) and between condition pairs (by two-tailed t-tests,
p<0.05 or less). The delay rules enforce rather strong constraints on what
domain problems are posed, and cut the domain constraint instances required
for interpretation roughly by a factor of six. The further halving achieved by
our handbuilt proof order is comparatively small.

The performance data likewise show clear differences across conditions
(one-way ANOVA, p<0.0001). Indeed, we found a strong overall correla-
tion between elapsed interaction time and constraint instances solved (r=0.88,
p<0.0001). Notice that processing the five instructions of Figure 1 re-
quired nearly 90 seconds on the random incremental interpretation strategy
(O=R/D=R), while our handbuilt system achieved the same results in under
4 seconds. Such data show that supporting real-time interactions in domains
where inference is expensive demands a flexible inference strategy.

13

4 A methodological challenge

In this paper, we have argued that deep domain reasoning, including causal
inference and plan recognition, should guide natural language understanding,
and we have described an effective implementation of this idea. Our im-
plementation casts domain inference as a modular and potentially expensive
problem-solving process. This domain inference proceeds flexibly, and provi-
sional interpretations contain records of the developing problem-solving state.
Domain inference informs interpretive choices whenever sufficient constraints
become available to yield meaningful conclusions. But otherwise, when con-
straints are insufficient, we prefer to avoid domain inference altogether.

Our approach to implementation has been to specify the problem-solving
interface between language understanding and domain reasoning by hand. Al-
though this is a flexible approach that offers fine-grained control, we feel that
such programming is too expensive to pursue in most cases. The strategy
requires painstaking effort from programmers, who must come to understand
what problems are tightly constrained, what problems are underconstrained,
and what problems are simply infeasible. Yet the results are fragile to changes
in domain representation and reasoning. Our experience is that scalable in-
ference should rest on general abstractions, not meticulous analysis.

Two such abstractions suggest themselves as prospects for future work.
One is linguistic. The patterns of description and constituency that a speaker
has chosen to realize their thought may provide a close guide to the inferential
effort of the system to recognize it. Concretely, if a speaker wants you to
identify some discourse entity which is explicitly or implicitly referenced in
an utterance, you can reasonably expect her to provide you with a specific
constituent that can be used to select a small selection of candidate referents,
if not the exact referent itself. Before such a constituent completely arrives,
you could delay problem-solving involving that referent. The challenge here is
to extend this intuitively appealing strategy to the rich ontology we actually
find in linking meaning and interpretation.

Another possibility is empirical. The system could optimize its inferential
strategy based on a learned model of the costs and outcomes of inference from
prior linguistic experience. For example, chart edges could be assigned a score,
computed from readily available, relatively shallow features, in advance of in-
ference, indicating both how likely the edge is to yield the right interpretation,
and how much work it would be for the system to derive that interpretation.
Inference mechanisms could then work on the best-scoring constituents first,
and thereby focus their effort on small and useful problems. The challenge
here is to find models of the costs and outcomes of inference that generalize
effectively and require only modest quantities of training data.

Since each of these approaches has its potential strengths and weaknesses,
we hope in future work to implement and investigate both, providing a broader
and more detailed guide to future implementations.

14

References

[1] Allen, J., G. Ferguson and A. Stent, An architecture for more realistic
conversational systems, in: Proceedings of Intelligent User Interfaces (IUI),
2001.

[2] Bos, J. and T. Oka, An inference-based approach to dialogue system design, in:
COLING, 2002, pp. 113–119.

[3] Brown-Schmidt, S., E. Campana and M. K. Tanenhaus, Reference resolution in
the wild: On-line circumscription of referential domains in a natural interactive
problem-solving task, in: Proceedings of the Cognitive Science Society, 2002, pp.
148–153.

[4] Clark, H. H. and D. Wilkes-Gibbs, Referring as a collaborative process, in: P. R.
Cohen, J. Morgan and M. E. Pollack, editors, Intentions in Communication,
MIT, 1990 pp. 463–493.

[5] Duchier, D., C. Gardent and J. Niehren, “Concurrent Constraint Programming
in Oz for Natural Language Processing,” Programming Systems Lab,
Universität des Saarlandes, Germany, 1998.

[6] Gabsdil, M., A. Koller and K. Striegnitz, Natural language and inference in a
computer game, in: COLING, 2002.

[7] Haddock, N. J., Computational models of incremental semantic interpretation,
Language and Cognitive Processes 4 (1989), pp. 337–368.

[8] Lesh, N., C. Rich and C. L. Sidner, Collaborating with focused and unfocused
users under imperfect communication, in: International Conference on User
Modeling (UM), 2001, pp. 63–74.

[9] Levesque, H. J., Foundations of a functional approach to knowledge
representation, Artificial Intelligence 23 (1984), pp. 155–212.

[10] Milward, D. and R. Cooper, Incremental interpretation: Applications, theory,
and relationship to dynamic semantics, in: COLING, 1994, pp. 748–754.

[11] Rich, C., C. L. Sidner and N. Lesh, COLLAGEN: applying collaborative
discourse theory to human-computer interaction, AI Magazine 22 (2001),
pp. 15–25.

[12] Schuler, W., Computational properties of environment-based disambiguation, in:
Proceedings of ACL, 2001, pp. 466–473.

[13] Stone, M., Knowledge representation for language engineering, in: A. Farghaly,
editor, A Handbook for Language Engineers, CSLI, 2003 .

[14] Stone, M., Linguistic representation and Gricean inference, in: International
Workshop on Computational Semantics, 2003, pp. 5–21.

[15] Yates, A., O. Etzioni and D. Weld, A reliable natural language interface to
household appliances, in: Proceedings of Intelligent User Interfaces (IUI), 2003.

15

