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Abstract

We describe a methodology for learning a
disambiguation model for deep pragmatic
interpretations in the context of situated
task-oriented dialogue. The system accu-
mulates training examples for ambiguity
resolution by tracking the fates of alter-
native interpretations across dialogue, in-
cluding subsequent clarificatory episodes
initiated by the system itself. We illus-
trate with a case study building maxi-
mum entropy models over abductive in-
terpretations in a referential communica-
tion task. The resulting model correctly re-
solves 81% of ambiguities left unresolved
by an initial handcrafted baseline. A key
innovation is that our method draws exclu-
sively on a system’s own skills and experi-
ence and requires no human annotation.

1 Introduction

In dialogue, the basic problem of interpretation is
to identify the contribution a speaker is making to
the conversation. There is much to recognize: the
domain objects and properties the speaker is refer-
ring to; the kind of action that the speaker is per-
forming; the presuppositions and implicatures that
relate that action to the ongoing task. Neverthe-
less, since the seminal work of Hobbs et al. (1993),
it has been possible to conceptualize pragmatic in-
terpretation as a unified reasoning process that se-
lects a representation of the speaker’s contribution
that is most preferred according to a background
model of how speakers tend to behave.

In principle, the problem of pragmatic interpre-
tation is qualitatively no different from the many
problems that have been tackled successfully by
data-driven models in NLP. However, while re-
searchers have shown that it is sometimes possi-
ble to annotate corpora that capture features of in-

terpretation, to provide empirical support for the-
ories, as in (Eugenio et al., 2000), or to build
classifiers that assist in dialogue reasoning, as in
(Jordan and Walker, 2005), it is rarely feasible
to fully annotate the interpretations themselves.
The distinctions that must be encoded are subtle,
theoretically-loaded and task-specific—and they
are not always signaled unambiguously by the
speaker. See (Poesio and Vieira, 1998; Poesio
and Artstein, 2005), for example, for an overview
of problems of vagueness, underspecification and
ambiguity in reference annotation.

As an alternative to annotation, we argue here
that dialogue systems can and should prepare
their own training data by inference from under-
specified models, which provide sets of candi-
date meanings, and from skilled engagement with
their interlocutors, who know which meanings are
right. Our specific approach is based on contribu-
tion tracking (DeVault, 2008), a framework which
casts linguistic inference in situated, task-oriented
dialogue in probabilistic terms. In contribution
tracking, ambiguous utterances may result in alter-
native possible contexts. As subsequent utterances
are interpreted in those contexts, ambiguities may
ramify, cascade, or disappear, giving new insight
into the pattern of activity that the interlocutor is
engaged in. For example, consider what happens
if the system initiates clarification. The interlocu-
tor’s answer may indicate not only what they mean
now but also what they must have meant earlier
when they used the original ambiguous utterance.

Contribution tracking allows a system to accu-
mulate training examples for ambiguity resolution
by tracking the fates of alternative interpretations
across dialogue. The system can use these ex-
amples to improve its models of pragmatic inter-
pretation. To demonstrate the feasibility of this
approach in realistic situations, we present a sys-
tem that tracks contributions to a referential com-
munication task using an abductive interpretation



model: see Section 2. A user study with this sys-
tem, described in Section 3, shows that this sys-
tem can, in the course of interacting with its users,
discover the correct interpretations of many poten-
tially ambiguous utterances. The system thereby
automatically acquires a body of training data in
its native representations. We use this data to build
a maximum entropy model of pragmatic interpre-
tation in our referential communication task. After
training, we correctly resolve 81% of the ambigu-
ities left open in our handcrafted baseline.

2 Contribution tracking

We continue a tradition of research that uses sim-
ple referential communication tasks to explore the
organization and processing of human–computer
and mediated human–human conversation, includ-
ing recently (DeVault and Stone, 2007; Gergle
et al., 2007; Healey and Mills, 2006; Schlangen
and Fernández, 2007). Our specific task is a two-
player object-identification game adapted from the
experiments of Clark and Wilkes-Gibbs (1986)
and Brennan and Clark (1996); see Section 2.1.
To play this game, our agent, COREF, inter-
prets utterances as performing sequences of task-
specific problem-solving acts using a combination
of grammar-based constraint inference and abduc-
tive plan recognition; see Section 2.2. Crucially,
COREF’s capabilities also include the ambiguity
management skills described in Section 2.3, in-
cluding policies for asking and answering clarifi-
cation questions.

2.1 A referential communication task
The game plays out in a special-purpose graphical
interface, which can support either human–human
or human–agent interactions. Two players work
together to create a specific configuration of ob-
jects, or a scene, by adding objects into the scene
one at a time. Their interfaces display the same set
of candidate objects (geometric objects that differ
in shape, color and pattern), but their locations are
shuffled. The shuffling undermines the use of spa-
tial expressions such as “the object at bottom left”.
Figures 1 and 2 illustrate the different views.1

1Note that in a human–human game, there are literally
two versions of the graphical interface on the separate com-
puters the human participants are using. In a human–agent
interaction, COREF does not literally use the graphical inter-
face, but the information that COREF is provided is limited
to the information the graphical interface would provide to a
human participant. For example, COREF is not aware of the
locations of objects on its partner’s screen.

Present: [c4, Agent], Active: [] 

Skip this objectContinue (next object) or You (c4:) 

c4: brown diamond

c4: yes

History  

Candidate Objects    Your scene    

Figure 1: A human user plays an object identifi-
cation game with COREF. The figure shows the
perspective of the user (denoted c4). The user is
playing the role of director, and trying to identify
the diamond at upper right (indicated to the user
by the blue arrow) to COREF.

Present: [c4, Agent], Active: [] 

Skip this object or You (Agent:) 

c4: brown diamond

c4: yes

History  

Candidate Objects    Your scene    

Figure 2: The conversation of Figure 1 from
COREF’s perspective. COREF is playing the role
of matcher, and trying to determine which object
the user wants COREF to identify.

As in the experiments of Clark and Wilkes-
Gibbs (1986) and Brennan and Clark (1996), one
of the players, who plays the role of director,
instructs the other player, who plays the role of
matcher, which object is to be added next to the
scene. As the game proceeds, the next target ob-
ject is automatically determined by the interface
and privately indicated to the director with a blue
arrow, as shown in Figure 1. (Note that the corre-
sponding matcher’s perspective, shown in Figure
2, does not include the blue arrow.) The director’s
job is then to get the matcher to click on (their ver-
sion of) this target object.

To achieve agreement about the target, the two
players can exchange text through an instant-
messaging modality. (This is the only communi-



cation channel.) Each player’s interface provides
a real-time indication that their partner is “Active”
while their partner is composing an utterance, but
the interface does not show in real-time what is
being typed. Once the Enter key is pressed, the
utterance appears to both players at the bottom of
a scrollable display which provides full access to
all the previous utterances in the dialogue.

When the matcher clicks on an object they be-
lieve is the target, their version of that object is pri-
vately moved into their scene. The director has no
visible indication that the matcher has clicked on
an object. However, the director needs to click the
Continue (next object) button (see Fig-
ure 1) in order to move the current target into the
director’s scene, and move on to the next target
object. This means that the players need to discuss
not just what the target object is, but also whether
the matcher has added it, so that they can coordi-
nate on the right moment to move on to the next
object. If this coordination succeeds, then after
the director and matcher have completed a series
of objects, they will have created the exact same
scene in their separate interfaces.

2.2 Interpreting user utterances
COREF treats interpretation broadly as a prob-
lem of abductive intention recognition (Hobbs et
al., 1993).2 We give a brief sketch here to high-
light the content of COREF’s representations, the
sources of information that COREF uses to con-
struct them, and the demands they place on disam-
biguation. See DeVault (2008) for full details.

COREF’s utterance interpretations take the
form of action sequences that it believes would
constitute coherent contributions to the dialogue
task in the current context. Interpretations are con-
structed abductively in that the initial actions in
the sequence need not be directly tied to observ-
able events; they may be tacit in the terminology
of Thomason et al. (2006). Examples of such tacit
actions include clicking an object, initiating a clar-
ification, or abandoning a previous question. As
a concrete example, consider utterance (1b) from
the dialogue of Figure 1, repeated here as (1):

(1) a. COREF: is the target round?
b. c4: brown diamond
c. COREF: do you mean dark brown?
d. c4: yes

2In fact, the same reasoning interprets utterances, button
presses and the other actions COREF observes!

In interpreting (1b), COREF hypothesizes that the
user has tacitly abandoned the agent’s question in
(1a). In fact, COREF identifies two possible inter-
pretations for (1b):

i2,1= 〈 c4:tacitAbandonTasks[2],
c4:addcr[t7,rhombus(t7)],
c4:setPrag[inFocus(t7)],
c4:addcr[t7,saddlebrown(t7)]〉

i2,2= 〈 c4:tacitAbandonTasks[2],
c4:addcr[t7,rhombus(t7)],
c4:setPrag[inFocus(t7)],
c4:addcr[t7,sandybrown(t7)]〉

Both interpretations begin by assuming that
user c4 has tacitly abandoned the previous ques-
tion, and then further analyze the utterance as per-
forming three additional dialogue acts. When a di-
alogue act is preceded by tacit actions in an inter-
pretation, the speaker of the utterance implicates
that the earlier tacit actions have taken place (De-
Vault, 2008). These implicatures are an important
part of the interlocutors’ coordination in COREF’s
dialogues, but they are a major obstacle to annotat-
ing interpretations by hand.

Action sequences such as i2,1 and i2,2 are coher-
ent only when they match the state of the ongoing
referential communication game and the seman-
tic and pragmatic status of information in the dia-
logue. COREF tracks these connections by main-
taining a probability distribution over a set of di-
alogue states, each of which represents a possi-
ble thread that resolves the ambiguities in the di-
alogue history. For performance reasons, COREF
entertains up to three alternative threads of inter-
pretation; COREF strategically drops down to the
single most probable thread at the moment each
object is completed. Each dialogue state repre-
sents the stack of processes underway in the ref-
erential communication game; constituent activi-
ties include problem-solving interactions such as
identifying an object, information-seeking interac-
tions such as question–answer pairs, and ground-
ing processes such as acknowledgment and clari-
fication. Dialogue states also represent pragmatic
information including recent utterances and refer-
ents which are salient or in focus.

COREF abductively recognizes the intention I
of an actor in three steps. First, for each dia-
logue state sk, COREF builds a horizon graph of
possible tacit action sequences that could be as-
sumed coherently, given the pending tasks (De-
Vault, 2008).

Second, COREF uses the horizon graph and
other resources to solve any constraints associ-



ated with the observed action. This step instanti-
ates any free parameters associated with the action
to contextually relevant values. For utterances,
the relevant constraints are identified by parsing
the utterance using a hand-built, lexicalized tree-
adjoining grammar. In interpreting (1b), the parse
yields an ambiguity in the dialogue act associated
with the word “brown”, which may mean either
of the two shades of brown in Figure 1, which
COREF distinguishes using its saddlebrown
and sandybrown concepts.

Once COREF has identified a set of interpre-
tations {it,1, ..., it,n} for an utterance o at time t,
the last step is to assign a probability to each. In
general, we conceive of this following Hobbs et
al. (1993): the agent should weigh the different
assumptions that went into constructing each in-
terpretation.3 Ultimately, this process should be
made sensitive to the rich range of factors that
are available from COREF’s deep representation
of the dialogue state and the input utterance—this
is our project in this paper. However, in our initial
implemented prototype, COREF assigned these
probabilities using a simple hand-built model con-
sidering only NT, the number of tacit actions ab-
ductively assumed to occur in an interpretation:

P (I = it,j |o, St = sk) ∝
1

NT(it,j) + 1
(1)

In effect, this is a “null hypothesis” that assigns
relatively uniform weights to different abductive
hypotheses.

2.3 Interactive disambiguation
COREF uses its probabilistic model of context in
order to tolerate ambiguity as it moves forward
with its dialogues and to resolve ambiguity over
time. We have put particular effort into COREF’s
skills with three kinds of ambiguity: word-sense
ambiguities, where COREF finds multiple resolu-
tions for the domain concept evoked by the use
of a lexical item, as in the interaction (1) of Fig-
ure 1; referential ambiguities, where COREF takes
a noun phrase to be compatible with multiple ob-
jects from the display; and speech act ambiguities,
where alternative interpretations communicate or
implicate different kinds of contributions to the
ongoing task.

The resolution of ambiguity may involve some
combination of asking questions of the user, ag-

3Though note that Hobbs et al. do not explicitly construe
their weights in terms of probabilities.

Figure 3: A human user plays the director role in
an object identification game with COREF. The
figure shows the perspective of the user.

gregating information provided by the user across
multiple turns of dialogue, and strategically drop-
ping threads of interpretation. For example,
COREF represents the context resulting from (1b)
in terms of two states: one from interpretation i2,1

and one from i2,2. COREF asks a clarification
question (1c); the user’s explicit answer yes allows
COREF to discard one of the possible states and
allocate all its probability mass to the other one.

The dialogue in (2) shows an alternative case.

(2) a. c1: color is orange
b. c1: shape is diamond
c. COREF: ok

The example is taken from the setting shown in
Figure 3. In this case, COREF finds two colors on
the screen it thinks the user could intend to evoke
with the word orange; the peachy orange of the di-
amond and circle on the top row and the brighter
orange of the solid and empty squares in the mid-
dle column. COREF responds to the ambiguity by
introducing two states which track the alternative
colors. Immediately COREF gets an additional
description from the user, and adds the constraint
that the object is a diamond. As there is no bright
orange diamond, there is no way to interpret the
user’s utterance in the bright orange state; COREF
discards this state and allocates all its probability
mass to the other one.

3 Inferring the fates of interpretations

Our approach is based on the observation that
COREF’s contribution tracking can be viewed as
assigning a fate to every dialogue state it enter-
tains as part of some thread of interpretation. In



particular, if we consider the agent’s contribution
tracking retrospectively, every dialogue state can
be assigned a fate of correct or incorrect, where a
state is viewed as correct if it or some of its descen-
dants eventually capture all the probability mass
that COREF is distributing across the viable sur-
viving states, and incorrect otherwise.

In general, there are two ways that a state can
end up with fate incorrect. One way is that the
state and all of its descendants are eventually de-
nied any probability mass due to a failure to in-
terpret a subsequent utterance or action as a co-
herent contribution from any of those states. In
this case, we say that the incorrect state was elimi-
nated. The second way a state can end up incorrect
is if COREF makes a strategic decision to drop the
state, or all of its surviving descendants, at a time
when the state or its descendants were assigned
nonzero probability mass. In this case we say that
the incorrect state was dropped. Meanwhile, be-
cause COREF drops all states but one after each
object is completed, there is a single hypothesized
state at each time t whose descendants will ulti-
mately capture all of COREF’s probability mass.
Thus, for each time t, COREF will retrospectively
classify exactly one state as correct.

Of course, we really want to classify interpre-
tations. Because we seek to estimate P (I =
it,j |o, St = sk), which conditions the probability
assigned to I = it,j on the correctness of state
sk, we consider only those interpretations arising
in states that are retrospectively identified as cor-
rect. For each such interpretation, we start from
the state where that interpretation is adopted and
trace forward to a correct state or to its last surviv-
ing descendant. We classify the interpretation the
same way as that final state, either correct, elimi-
nated, or dropped.

We harvested a training set using this method-
ology from the transcripts of a previous evaluation
experiment designed to exercise COREF’s ambi-
guity management skills. The data comes from
20 subjects—most of them undergraduates par-
ticipating for course credit—who interacted with
COREF over the web in three rounds of the ref-
erential communication each. The number of ob-
jects increased from 4 to 9 to 16 across rounds;
the roles of director and matcher alternated in each
round, with the initial role assigned at random.

Of the 3275 sensory events that COREF in-
terpreted in these dialogues, from the (retrospec-

N Percentage N Percentage
0 10.53 5 0.21
1 79.76 6 0.12
2 7.79 7 0.09
3 0.85 8 0.06
4 0.58 9 0.0

Figure 4: Distribution of degree of ambiguity in
training set. The table lists percentage of events
that had a specific number N of candidate inter-
pretations constructed from the correct state.

tively) correct state, COREF hypothesized 0 inter-
pretations for 345 events, 1 interpretation for 2612
events, and more than one interpretation for 318
events. The overall distribution in the number of
interpretations hypothesized from the correct state
is given in Figure 4.

4 Learning pragmatic interpretation

We capture the fate of each interpretation it,j in a
discrete variable F whose value is correct, elimi-
nated, or dropped. We also represent each inten-
tion it,j , observation o, and state sk in terms of
features. We seek to learn a function

P (F = correct | features(it,j),
features(o),
features(sk))

from a set of training examples E = {e1, ..., en}
where, for l = 1..n, we have:

el = ( F = fate(it,j), features(it,j),
features(o), features(sk)).

We chose to train maximum entropy models
(Berger et al., 1996). Our learning framework is
described in Section 4.1; the results in Section 4.2.

4.1 Learning setup
We defined a range of potentially useful features,
which we list in Figures 5, 6, and 7. These fea-
tures formalize pragmatic distinctions that plau-
sibly provide evidence of the correct interpreta-
tion for a user utterance or action. You might
annotate any of these features by hand, but com-
puting them automatically lets us easily explore a
much larger range of possibilities. To allow these
various kinds of features (integer-valued, binary-
valued, and string-valued) to interface to the max-
imum entropy model, these features were con-
verted into a much broader class of indicator fea-
tures taking on a value of either 0.0 or 1.0.



feature set description
NumTacitActions The number of tacit actions in it,j .
TaskActions These features represent the action type (function symbol) of

each action ak in it,j = 〈A1 : a1, A2 : a2, ..., An : an〉, as a
string.

ActorDoesTaskAction For each Ak : ak in it,j = 〈A1 : a1, A2 : a2, ..., An : an〉, a
feature indicates that Ak (represented as string “Agent” or
“User”) has performed action ak (represented as a string
action type, as in the TaskActions features).

Presuppositions If o is an utterance, we include a string representation of each
presupposition assigned to o by it,j . The predicate/argument
structure is captured in the string, but any gensym identifiers
within the string (e.g. target12) are replaced with
exemplars for that identifier type (e.g. target).

Assertions If o is an utterance, we include a string representation of each
dialogue act assigned to o by it,j . Gensym identifiers are
filtered as in the Presuppositions features.

Syntax If o is an utterance, we include a string representation of the
bracketed phrase structure of the syntactic analysis assigned to
o by it,j . This includes the categories of all non-terminals in
the structure.

FlexiTaskIntentionActors Given it,j = 〈A1 : a1, A2 : a2, ..., An : an〉, we include a single
string feature capturing the actor sequence 〈A1, A2, ..., An〉 in
it,j (e.g. “User, Agent, Agent”).

Figure 5: The interpretation features, features(it,j), available for selection in our learned model.

feature set description
Words If o is an utterance, we include features that indicate the

presence of each word that occurs in the utterance.

Figure 6: The observation features, features(o), available for selection in our learned model.

feature set description
NumTasksUnderway The number of tasks underway in sk.
TasksUnderway The name, stack depth, and current task state for each task

underway in sk.
NumRemainingReferents The number of objects yet to be identified in sk.
TabulatedFacts String features representing each proposition in the

conversational record in sk (with filtered gensym identifiers).
CurrentTargetConstraints String features for each positive and negative constraint on the

current target in sk (with filtered gensym identifiers). E.g.
“positive: squareFigureObject(target)” or
“negative: solidFigureObject(target)”.

UsefulProperties String features for each property instantiated in the experiment
interface in sk. E.g. “squareFigureObject”,
“solidFigureObject”, etc.

Figure 7: The dialogue state features, features(sk), available for selection in our learned model.



We used the MALLET maximum entropy clas-
sifier (McCallum, 2002) as an off-the-shelf, train-
able maximum entropy model. Each run involved
two steps. First, we applied MALLET’s feature
selection algorithm, which incrementally selects
features (as well as conjunctions of features) that
maximize an exponential gain function which rep-
resents the value of the feature in predicting in-
terpretation fates. Based on manual experimenta-
tion, we chose to have MALLET select about 300
features for each learned model. In the second
step, the selected features were used to train the
model to estimate probabilities. We used MAL-
LET’s implementation of Limited-Memory BFGS
(Nocedal, 1980).

4.2 Evaluation

We are generally interested in whether COREF’s
experience with previous subjects can be lever-
aged to improve its interactions with new sub-
jects. Therefore, to evaluate our approach, while
making maximal use of our available data set, we
performed a hold-one-subject-out cross-validation
using our 20 human subjects H = {h1, ..., h20}.
That is, for each subject hi, we trained a model
on the training examples associated with subjects
H \ {hi}, and then tested the model on the exam-
ples associated with subject hi.

To quantify the performance of the learned
model in comparison to our baseline, we adapt
the mean reciprocal rank statistic commonly used
for evaluation in information retrieval (Vorhees,
1999). We expect that a system will use the prob-
abilities calculated by a disambiguation model to
decide which interpretations to pursue and how to
follow them up through the most efficient interac-
tion. What matters is not the absolute probability
of the correct interpretation but its rank with re-
spect to competing interpretations. Thus, we con-
sider each utterance as a query; the disambigua-
tion model produces a ranked list of responses for
this query (candidate interpretations), ordered by
probability. We find the rank r of the correct in-
terpretation in this list and measure the outcome
of the query as 1

r . Because of its weak assump-
tions, our baseline disambiguation model actually
leaves many ties. So in fact we must compute an
expected reciprocal rank (ERR) statistic that aver-
ages 1

r over all ways of ordering the correct inter-
pretation against competitors of equal probability.

Figure 8 shows a histogram of ERR across

ERR range Hand-built
model

Learned
models

1 20.75% 81.76%
[12 , 1) 74.21% 16.35%
[13 , 1

2) 3.46% 1.26%
[0, 1

3) 1.57% 0.63%

mean(ERR) 0.77 0.92
var(ERR) 0.02 0.03

Figure 8: For the 318 ambiguous sensory events,
the distribution of the expected reciprocal of rank
of the correct interpretation, for the initial, hand-
built model and the learned models in aggregate.

the ambiguous utterances from the corpus. The
learned models correctly resolve almost 82%,
while the baseline model correctly resolves about
21%. In fact, the learned models get much of this
improvement by learning weights to break the ties
in our baseline model. The overall performance
measure for a disambiguation model is the mean
expected reciprocal rank across all examples in the
corpus. The learned model improves this metric to
0.92 from a baseline of 0.77. The difference is un-
ambiguously significant (Wilcoxon rank sum test
W = 23743.5, p < 10−15).

4.3 Selected features
Feature selection during training identified a vari-
ety of syntactic, semantic, and pragmatic features
as useful in disambiguating correct interpretations.
Selections were made from every feature set in
Figures 5, 6, and 7. It was often possible to iden-
tify relevant features as playing a role in successful
disambiguation by the learned models. For exam-
ple, the learned model trained on H \ {c4} deliv-
ered the following probabilities for the two inter-
pretations COREF found for c4’s utterance (1b):

P (I = i2,1|o, S2 = s8923) = 0.665
P (I = i2,2|o, S2 = s8923) = 0.335

The correct interpretation, i2,1, hypothesizes that
the user means saddlebrown, the darker of the
two shades of brown in the display. Among the
features selected in this model is a Presupposi-
tions feature (see Figure 5) which is present just
in case the word ‘brown’ is interpreted as mean-
ing saddlebrown rather than some other shade.
This feature allows the learned model to prefer
to interpret c4’s use of ‘brown’ as meaning this



darker shade of brown, based on the observed lin-
guistic behavior of other users.

5 Results in context

Our work adds to a body of research learning deep
models of language from evidence implicit in an
agent’s interactions with its environment. It shares
much of its motivation with co-training (Blum and
Mitchell, 1998) in improving initial models by
leveraging additional data that is easy to obtain.
However, as the examples of Section 2.3 illustrate,
COREF’s interactions with its users offer substan-
tially more information about interpretation than
the raw text generally used for co-training. Closer
in spirit is AI research on learning vocabulary
items by connecting user vocabulary to the agent’s
perceptual representations at the time of utterance
(Oates et al., 2000; Roy and Pentland, 2002; Co-
hen et al., 2002; Yu and Ballard, 2004; Steels
and Belpaeme, 2005). Our framework augments
this information about utterance context with ad-
ditional evidence about meaning from linguistic
interaction. In general, dialogue coherence is an
important source of evidence for all aspects of lan-
guage, for both human language learning (Saxton
et al., 2005) as well as machine models. For exam-
ple, Bohus et al. (2008) use users’ confirmations
of their spoken requests in a multi-modal interface
to tune the system’s ASR rankings for recognizing
subsequent utterances.

Our work to date has a number of limitations.
First, although 318 ambiguous interpretations did
occur, this user study provided a relatively small
number of ambiguous interpretations, in machine
learning terms; and most (80.2%) of those that did
occur were 2-way ambiguities. A richer domain
would require both more data and a generative ap-
proach to model-building and search.

Second, this learning experiment has been per-
formed after the fact, and we have not yet inves-
tigated the performance of the learned model in a
follow-up experiment in which COREF uses the
learned model in interactions with its users.

A third limitation lies in the detection of
‘correct’ interpretations. Our scheme some-
times conflates the user’s actual intentions with
COREF’s subsequent assumptions about them. If
COREF decides to strategically drop the user’s
actual intended interpretation, our scheme may
mark another interpretation as ‘correct’. Alterna-
tive approaches may do better at harvesting mean-

ingful examples of correct and incorrect interpre-
tations from an agent’s dialogue experience. Our
approach also depends on having clear evidence
about what an interlocutor has said and whether
the system has interpreted it correctly—evidence
that is often unavailable with spoken input or
information-seeking tasks. Thus, even when spo-
ken language interfaces use probabilistic inference
for dialogue management (Williams and Young,
2007), new techniques may be needed to mine
their experience for correct interpretations.

6 Conclusion

We have implemented a system COREF that
makes productive use of its dialogue experience by
learning to rank new interpretations based on fea-
tures it has historically associated with correct ut-
terance interpretations. We present these results as
a proof-of-concept that contribution tracking pro-
vides a source of information that an agent can
use to improve its statistical interpretation process.
Further work is required to scale these techniques
to richer dialogue systems, and to understand the
best architecture for extracting evidence from an
agent’s interpretive experience and modeling that
evidence for future language use. Nevertheless,
we believe that these results showcase how judi-
cious system-building efforts can lead to dialogue
capabilities that defuse some of the bottlenecks to
learning rich pragmatic interpretation. In particu-
lar, a focus on improving our agents’ basic abilities
to tolerate and resolve ambiguities as a dialogue
proceeds may prove to be a valuable technique for
improving the overall dialogue competence of the
agents we build.
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